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Abstract. Because of the subgroup–group relationship which exists between the space group
of yellow InCl (P213, Z = 32) and that of rock salt(Fm3̄m,Z = 1), a Landau expansion of
the free energy in invariants of the symmetry group of higher order can be performed and a
mechanism for distortion arises. The special feature of this hypothetical phase transition is that
three lattice modes of different symmetry type and of almost equal force constant bring about
the deformation. These three modes, which are apparently nearly degenerate, effect longitudinal
displacements of rows of ions, with different amplitudes for the cations and the anions. When
these are described by an order parameter, an expansion of the free energy up to the fourth
power and containing third-order terms is possible. The cooperation of pseudo-degenerate
modes of different symmetry is a hitherto unknown distortion mechanism. Yellow InCl is further
characterized by bilinear quantities describing ferrodistortive chirality(A1u) and electric ‘A2u’
octupoles and antiferrodistortive spiral(A2g) arrangements. These bilinear quantities are related
to fourth-order Landau invariants. Yellow InCl has an electric octupole lattice. In addition, on
the basis of the analogy with optical rotatory power, new mechanisms of this effect are predicted.

1. Introduction

The crystal structure of yellow InCl was determined for the first time by Van den Berg
[1, 2] and was redetermined by Van der Vorstet al [3]. Yellow InCl has a complicated
structure with space group (S.G.)P213 andZ = 32. The structure is unique, in the sense
that no other compound is known to have this structure. From the structure determinations
[1–3] it has already become clear that this space group is a subgroup of the groupFm3̄m
of rock salt (also referred to as the B1 structure type). Van den Berg used the rock-salt
positions as a starting point for the structure derivation. We will give a tablevide infra
which shows the differences between the real ion positions and those of a rock-salt-like
structure. However, no phase transition between the yellow InCl phase and a rock-salt
structure has ever been found. Above 390 K a red form of InCl is stable. It has theβ-TlI
structure (S.G.Cmcm,Z = 4) [3], which is known to occur in several other compounds.
There is no subgroup–group relationship betweenCmcm and the space groups of rock salt
and of yellow InCl.

The distortion from the B1-type structure has been attributed to the presence of a 5s2

outer-electron configuration in the In+ ion [4, 5]. In general these lone pairs of the more
general typens2 occur on lower-valence cations of the p-block elements. A variety of local
coordinations occur among simple AB compounds, where A represents such a cation. For
example PbS, PbSe and PbTe all have the rock-salt structure [6] with 6-coordination. On the
other hand TlCl, TlBr andα-TlI each have a CsCl-like (B2-type, 8-coordination) structure
[6]. α-GeTe shows trigonally distorted octahedra (S.G.R3m, Z = 1) [7]. Its space group
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is a subgroup ofFm3̄m. It is a well-known ferroelectric and its phase transition to the
B1-type structure is described in several places (see, e.g., [8]). Alsoβ-TlF [9] and β-PbO
[10, 11] show deformed B1 structures. Furthermore, in red InCl (with theβ-TlI structure),
in one direction double layers of the rock-salt type are still observable; see, e.g., [12, 13].
This evidence supports the fundamental idea that the supergroup with respect to the space
group of yellow InCl is the space group of rock salt. The unit cell of (yellow) InCl is a
cube with cell parameters twice as large as the cubic cell parameters of the underlying B1
structure. The index between the two space groups is 128, which is exceptionally large.

The distortions of the InCl6 octahedra due to the stereochemically active 5s2 lone pairs
in the structures of yellow InCl and red InCl have been studied by us in two papers: Van
der Vorst and Maaskant [4] and Maaskant [5]. These papers also give diagrams of the local
octahedra. But a diagram of the lattice distortion as a whole has never been published since,
up to now, the essence of the cooperative deformation has not been understood.

It is the aim of the present paper to explain the mechanism of the lattice distortion. It
will be shown that to a good approximation the lattice deformation is a superposition of
three equally strong modes belonging to different irreducible representations of the space
groupFm3̄m. This will result in a pattern of longitudinal shifts of rows of ions (figures 8
and 9—see later).

Since the space group of yellow InCl is a subgroup of the space group of rock salt, it
is possible to develop the thermodynamic potential (often called the free energy) in a series
containing invariants of the higher space group. Such series have been used by Landau
[14] (also Landau and Lifshitz [15]) in order to formulate the conditions for a second-order
phase transition. In the case of a second-order phase transition the order parameter can in
principle be made infinitely small, in order to ensure convergence of the series expansion.
In the case of InCl we have no phase transition, and a strict proof that such a development
can be cut off after the fourth power of the order parameters is lacking. However, this
assumption does not lead to absurdities. Not only has no phase transition to or from the
rock-salt structure been found, but also there is no experimental evidence of a successive
series of phase transitions, such as occurs sometimes for other compounds.

Van der Vorst [16] expressed the shifts of the ions in InCl with respect to the rock-
salt structure positions in terms of lattice modes of the high-symmetry S.G. (Fm3̄m). A
derivation of these lattice modes has never been given before, and will be described in the
appendix (section A.1). Section 2 introduces the ‘geometric’ approximation and the local
distortion coordinates.

Section 3 shows that the geometric approximation is characterized by distortions which
resemble isolated longitudinal shifts of rows of ions. Three lattice modes of different
symmetries and almost equal amplitudes determine these longitudinal shifts. The harmonic
energies of these three modes are estimated to be approximately equal. Diagrams of
the displacements of each type of mode are given, as well as of their combination for
the ‘geometric’ approximation. Also the possibility of a new type of optical chirality is
indicated.

In section 4 the third-order invariants in the development of the free energy are derived.
As third-order invariants are definitely there, the hypothetical phase transition would be of
the first order, since the third Landau condition has not been fulfilled.

In section 5 the fourth-order Landau invariants in the development of the free energy
are derived. A new method is used in trying to deduce from the reduction of the point
group of the crystal whether there are bilinear quantities which belong to the0 point. In
yellow InCl, these bilinear quantities clarify the resulting deformations. Whereas the1

modes are responsible for the ferrodistortive chirality, which arises from two sources, the
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W modes are responsible for a ferrodistortive ordering of tetrahedral octupoles, also from
two origins. The64 normal mode induces antiferrodistortively ordered bilinear quantities
of ‘A 2g’ symmetry. The number of fourth-order invariants is large.

In section 6 the Landau expansion of the free energy of the hypothetical phase transition
is given. What differs in our treatment from other cases is that the second Landau condition
is not fulfilled. We state that three pseudo-degenerate modes of equal strength and belonging
to different irreducible representations (in the following shortened to irreps) describe the
cooperative distortion in yellow InCl to a good approximation.

In this paper, very often scalar products are applied. We discriminate between scalars
that are totally symmetric in the point groupm3̄m and those that belong to one-dimensional
irreps other than A1g. The latter are called pseudoscalars.

Table 1. Deviations in yellow InCl from the idealized B1 positions given as fractions of the
cubic cell parameter.

Ion x0 y0 z0 δx δy δz

In(1) 1
4

1
4 0 −0.0013 −0.0302 −0.0288

In(2) 3
4

3
4 0 0.0027 0.0281 0.0295

In(3) 0 0 0 0.0302 0.0302 0.0302

In(4) 1
2

1
2

1
2 −0.0327 −0.0327 −0.0327

Cl(1) 1
4 0 0 0.0505 −0.0504 0.0005

Cl(2) 3
4 0 0 0.0498 0.0549−0.0110

Cl(3) 1
4

1
4

1
4 −0.0439 −0.0439 −0.0439

Cl(4) 3
4

3
4

3
4 0.0486 0.0486 0.0486

2. Symmetrized deformations

Table 1 expresses the experimental distortions from the B1 structure [3]. The rock-salt
positions, expressed in the space group of yellow InCl, are given in the columns headed by
x0, y0, z0. The deviations (δx , δy , δz) are an order of magnitude smaller than the rock-salt
values, giving further evidence of the subgroup–group relationship between yellow InCl and
the B1 structure.

Table 1 also shows that there are different types of site in the unit cell of InCl. In(1),
In(2), Cl(1) and Cl(2) are at a general point, which is twelvefold. In(3), In(4), Cl(3) and
Cl(4) lie on threefold axes and are fourfold.

Van der Vorst [16] has expressed these deformations in lattice symmetry coordinates.
Since we use differently normalized symmetry modes (see table A1, later) our results (table
2) differ. The primed symbols denote the In ions, while the unprimed symbols denote the
Cl ions. The precision of these numbers is the same as that for the parameters found from
the crystal structure determination [3].

Table 2 shows that some of the symmetry coordinates are very small while the others
are almost equal in absolute value both for the In and the Cl ions. In table 3 we give
the parameters for what we call the ‘geometric’ approximation. We have taken one linear
combination with equal absolute amplitudes for the two1 modes and similarly for the W
modes. Since the64 mode is single, the absolute values ofs3 and s ′3 are

√
2 larger than

the absolute values of the1 and W parameters. The ‘geometric’ approximation consists in
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allocating the combination of1 modes, the combination of W modes and the64 mode the
same absolute amplitude.

Table 4 shows the coordinates of the ‘geometric’ approximation given as fractions of
the cell parameter of yellow InCl and the differences (ux , uy and uz) from the observed
values. Note that the latter are in general an order of magnitude smaller than the differences
from the rock-salt structure. We discuss in the following only this idealized form for InCl.
It has the same space group as yellow InCl.

Table 2. Experimental symmetry coordinates.

d ′1 = 0.0197 s′1 = −0.0001 d1 = 0.0272 s1 = −0.0001

d ′2 = −0.0191 s′2 = −0.0014 d2 = −0.0248 s2 = 0.0028

w′1 = 0.0188 s′3 = −0.0252 w1 = −0.0342 s3 = −0.0456

w′2 = 0.0166 l′1 = −0.0002 w2 = 0.0318 l2 = 0.0002

Table 3. Symmetry coordinates for the ‘geometric’ approximation.

d ′1 = 0.0184 s′1 = 0.0000 d1 = 0.0300 s1 = 0.0000

d ′2 = −0.0184 s′2 = 0.0000 d2 = −0.0300 s2 = 0.0000

w′1 = 0.0184 s′3 = −0.0260 w1 = −0.0300 s3 = −0.0425

w′2 = 0.0184 l′1 = 0.0000 w2 = 0.0300 l2 = 0.0000

Table 4. The coordinates arising from the ‘geometric’ approximation and the deviations of the
observed coordinates (the last three columns).

Ion x0 y0 z0 δx δy δz ux uy uz

In(1) 1
4

1
4 0 0.0000 −0.0301 −0.0301 −0.0013 −0.0001 0.0013

In(2) 3
4

3
4 0 0.0000 0.0301 0.0301 0.0027−0.0020 −0.0006

In(3) 0 0 0 0.0301 0.0301 0.0301 0.0001 0.0001 0.0001

In(4) 1
2

1
2

1
2 −0.0301 −0.0301 −0.0301 −0.0026 −0.0026 −0.0026

Cl(1) 1
4 0 0 0.0491 −0.0491 0.0000 0.0014−0.0013 0.0000

Cl(2) 3
4 0 0 0.0491 0.0491 0.0000 0.0007 0.0058−0.0115

Cl(3) 1
4

1
4

1
4 −0.0491 −0.0491 −0.0491 0.0052 0.0052 0.0052

Cl(4) 3
4

3
4

3
4 0.0486 0.0486 0.0486−0.0005 −0.0005 −0.0005

The local distortion modes of a regular octahedron are defined in table A3 of appendix
A.2—see later. In table 5 the local distortion coordinates of the deformed Cl octahedra
for the four In positions and also the deformed In octahedra for the four Cl positions are
given. There are three T1u modes, which can be expected to interact. However, our choice
in this table leads to the simplest coordinates. Table 5 shows that In(1) and Cl(1) have one
single T2u mode each. Figure 1 shows itsz-component. This transforms asz(x2 − y2) in
m3̄m. The mode consists of dipolar moments of the ligands in thez-direction, modulated
by x2 − y2. This is an electric octupole. SinceL = 3, we expect in a cubic system a
decomposition into T1u, T2u and A2u. The z-components of the T1u moments transform as



Yellow InCl as a distorted rock-salt lattice 9763

Table 5. Idealized octahedral symmetry coordinates given as fractions of the cell parameter of
InCl× 104. The ideal coordinates for the four In sites and the four Cl sites are given in tables
A4 and A5, respectively—see later.

In(1) In(2) In(3) In(4) Cl(1) Cl(2) Cl(3) Cl(4)

q(a1g) 0 0 0 0 0 0 0 0
q(egθ ) 0 0 0 0 0 0 0 0
q(egε) 0 0 0 0 0 0 0 0
q(t1gx) 496 496 −496 −496 300 300 −300 −300
q(t1gy) 496 −496 −496 −496 300 −300 −300 −300
q(t1gz) 496 496 −496 −496 300 300 −300 −300
q(t2gyz) −496 −496 −496 −496 300 300 300 300
q(t2gzx) 496 −496 −496 −496 300 −300 300 300
q(t2gxy) −496 −496 −496 −496 −300 −300 300 300
q(t1u1x) 300 −300 300 −300 496 −496 −496 496
q(t1u1y) 300 −300 300 −300 0 0 −496 496
q(t1u1z) 0 0 300 −300 496 496 −496 496
q(t1u2x) 701 −701 701 −701 424 −424 −424 424
q(t1u2y) 701 −701 701 −701 0 0 −424 424
q(t1u2z) 0 0 701 −701 424 424 −424 424
q(t1u3x) 0 0 0 0 0 0 0 0
q(t1u3y) 0 0 0 0 0 −600 0 0
q(t1u3z) 0 992 0 0 0 0 0 0
q(t2ux) 0 0 0 0 0 0 0 0
q(t2uy) 0 0 0 0 −600 0 0 0
q(t2uz) 992 0 0 0 0 0 0 0

Figure 1. A typical T2u distortion mode.

z(2z2− x2− y2). T1u moments are also present in the structure. They are mixed with other
types of T1u moment of the octahedra. The A2u component, however, transforms asxyz
and is not recognized by the ligands, since these are situated on the cartesian axes where
xyz is always zero.
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In appendix A.3 scalar invariants for the S.G.P213 are derived. These can be shown
to determine the differences between the In sites or between the Cl sites.

Table 6. The distortion by thek1
6-mode of two columns of ions. The numbers are fractions

× 104 of the InCl cell parameter.

In31 Cl23 In42 Cl23 Cl11 In13 Cl110 In112

Position Position
x 0 0 0 0 x 2500 2500 2500 2500
y 0 0 0 0 y 0 0 0 0
z 0 2500 5000 7500 z 0 2500 5000 7500

Deviation Deviation
dx 150 0 −150 0 dx 248 0 −248 0
dy 0 −248 0 248 dy 0 −150 0 150
dz 0 0 0 0 dz 0 0 0 0

Rx 248 0 −248 0 Rx 150 0 −150 0
Ry 0 −150 0 150 Ry 0 −248 0 248
Rz 0 0 0 0 Rz 0 0 0 0
Qyz −248 0 248 0 Qyz −150 0 150 0
Qzx 0 −150 0 150 Qzx 0 −248 0 248
Qxy 0 0 0 0 Qxy 0 0 0 0
µ1x 150 0 −150 0 µ1x 248 0 −248 0
µ1y 0 −248 0 248 µ1y 0 −150 0 150
µ1z 0 0 0 0 µ1z 0 0 0 0
µ2x 350 0 −350 0 µ2x 212 0 −212 0
µ2y 0 −212 0 212 µ2y 0 −350 0 350
µ2z 0 0 0 0 µ2z 0 0 0 0
µ3x 248 0 −248 0 µ3x 150 0 −150 0
µ3y 0 −150 0 150 µ3y 0 −248 0 248
µ3z 0 0 0 0 µ3z 0 0 0 0
Fx 248 0 −248 0 Fx 150 0 −150 0
Fy 0 150 0 −150 Fy 0 248 0 −248
Fz 0 0 0 0 Fz 0 0 0 0

3. Description of the distortion mechanism

In this section we discuss the deformations due to single modes and combinations of
distortion waves. The1 modes will be shown to consist of standing, circularly polarized,
planar waves along the (cubic) cell axes. These waves all have the same sense and magnitude
of the chirality. The latter can be shown to result in terms such asµ ·R, the scalar product
of the displacements and rotations, andQ ·F , whereQ represents the quadrupole moments
Qyz,Qzx,Qxy andF has components which transform asx(y2−z2), y(z2−x2), z(x2−y2)

respectively. These pseudoscalar products will be shown to be present in fourth-order energy
terms. In table 6 the action of justk1

6 on two columns of ions arranged along thez-direction
is given. For example Cl13 denotes a Cl ion of type 1 numbered 3 (there are 12 ions of this
type in the unit cell). Thex, y, z denote fractional coordinates× 104 with respect to the
InCl unit cell. dx, dy and dz denote the shifts in thex-, y-, z-directions respectively. The
other quantities are moments, whereR stands for T1g, Q for T2g, µ1 for T1u1 and similarly
for the otherµ-components, andF means T2u.

Since thek6-modes represent planar waves, a comparison with light waves is easily
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Table 7. The distortion by thek1
8-mode of two columns of ions. The numbers are fractions

× 104 of the InCl cell parameter.

In31 Cl23 In42 Cl23 Cl11 In13 Cl110 In112

Position Position
x 0 0 0 0 x 2500 2500 2500 2500
y 0 0 0 0 y 0 0 0 0
z 0 2500 5000 7500 z 0 2500 5000 7500

Shift Shift
dx 150 0 −150 0 dx 248 0 −248 0
dy 0 248 0 −248 dy 0 −150 0 150
dz 0 0 0 0 dz 0 0 0 0

Rx −248 0 248 0 Rx 150 0 −150 0
Ry 0 −150 0 150 Ry 0 −248 0 248
Rz 0 0 0 0 Rz 0 0 0 0
Qyz 248 0 −248 0 Qyz −150 0 150 0
Qzx 0 −150 0 150 Qzx 0 −248 0 248
Qxy 0 0 0 0 Qxy 0 0 0 0
µ1x 150 0 −150 0 µ1x 248 0 −248 0
µ1y 0 248 0 −248 µ1y 0 −150 0 150
µ1z 0 0 0 0 µ1z 0 0 0 0
µ2x 350 0 −350 0 µ2x 212 0 −212 0
µ2y 0 212 0 −212 µ2y 0 −350 0 350
µ2z 0 0 0 0 µ2z 0 0 0 0
µ3x −248 0 248 0 µ3x −150 0 150 0
µ3y 0 −150 0 150 µ3y 0 248 0 −248
µ3z 0 0 0 0 µ3z 0 0 0 0
Fx −248 0 248 0 Fx −150 0 150 0
Fy 0 150 0 −150 Fy 0 −248 0 248
Fz 0 0 0 0 Fz 0 0 0 0

made. There is a connection between the phenomenon of rotation of the plane of polarization
of light and the distortion due to e.g. thek1

6-mode. Condon [17] formulated the concept
of the rotational strengthRba of an individual electronic absorption band in terms of the
product of an electric dipole transition moment and a magnetic dipole transition moment:

Rba = Im{(a|p|b)(b|m|a)}. (1)

When we disregard the time dependence ofm, since in InCl we have a static case, we
find thatµ ·R is a measure of what we call the geometric chirality. Here forµ we have
the choice betweenµ1, µ2 andµ3. One may check in table 6 that quantities likeµxRx and
µyRy do all add up. Of course, otherk6-vectors exist.

However, a closer look at table 6 shows thatQ ·F is also a quantity which is induced
by thek1

6-distortion. It is another source of chirality, arising because of the wavelength of
the distortion wave being small with respect to the size of the octahedra. The edges of the
octahedra are≈0.35 times the wavelength of the1 mode. An analogue forQ · F in the
theory of optical activity has never been mentioned as far as we are aware. Figure 2 shows
pictorially the combination of an electric quadrupole transition moment and a magnetic
quadrupole transition moment.

The W waves are formed of circularly transverse waves as well (see table 7). However,
neighbouring rows have opposite senses, so the contribution to the overall chirality is zero.
On the other hand, these W waves introduce the tetrahedral (A2u) octupoles in yellow InCl.
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Figure 2. A new type of chirality represented by axial vectors from a dynamic T2uz moment
and polar vectors from a T2gxy moment. Note that the senses of the helices are the same for the
four quadrants.

Figure 3. A tetrahedral (A2u) electric octupole.

These are measured by the bilinear expressionµ ·Q. Therefore the W waves introduce a
ferrodistortive tetrahedral electric octupole which belongs to the A2u irrep of point group
m3̄m (see figure 3). Another quantity exists, which is formed byR · F and transforms as
A2u as well.

Similarly, for thek4-modes one finds the pseudoscalarQ ·R, which transforms as A2g.
Its sum over the unit cell of InCl is, however, zero. With respect to the ‘A2g’ scalar, the
compound with the idealized coordinates is antiferrodistortive. The termµ · F transforms
also as A2g. For the geometric approximation its contribution is exactly zero, however.

Interference occurs between the1 waves, the W waves and the64 waves and leads
to localization. This can be studied by applying these distortions one after another to rows
of ions. This is illustrated here for the simple case of taking onlyk1

6 (figure 4) andk1
8
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Figure 4. k1
6 for z = 0 (left) andz = 1/4 (right). In+ (Cl−) ions are represented by small

(large) circles. The types of ion (1, 2, 3 or 4) are denoted like the quarters of an hour.

Figure 5. k1
8 for z = 0 (left) andz = 1/4 (right). The ion notation is the same as that for

figure 4.

(figure 5) for the planes at the relative coordinatesz = 0 andz = 0.25. Alternate rows
or columns of In and Cl ions show longitudinal shifts, occurring because of the following
relations: w1 = −d1; d2 = −w2; d ′2 = −w′2; d ′1 = w′1. In this way, isolated chains are
formed which are longitudinally displaced; the distances between anions and cations are
alternating.

The complete expressions for the1 and the W modes (figure 6) show e.g. forz = 0
that not only vertically displaced rows exist, but horizontally displaced ones as well. The
latter alternate in direction, and it is precisely in between these horizontal lines that the
k4-displacements (see figure 7) are situated, so their interaction with the neighbouring lines
is in a first approximation zero.

Typical displacement patterns are shown e.g. in figure 7. Along the dotted line all ions
in that column experience the same type of even mode, which is shown (figure 11—see
later) to consist of a quadrupole component(T2g) and a rotation component(T1g). Similarly,
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Figure 6. The complete1 and W modes forz = 0 (left) andz = 1/4 (right). The asterisk
denotes a column of type 1 ions which have parallel T2u modes.

Figure 7. The x-, y-, z-components of the displacements of the64 modes forz = 0 (left) and
z = 1/4 (right). The dotted line denotes ions with even modes (see figure 11, later).

in all In and Cl ions of type 1 a single T2u component occurs. A column of these ions is
denoted with an asterisk in each layer of InCl (figures 8, 9). The typical T2u displacements
of the nearest neighbours of these ions are denoted by plus and minus signs. We have
tagged these same ions in figure 6 also, which shows that the localization of the T2u modes
arises from the combination of1 and W waves.

Obviously, the longitudinal displacement of rows of ions and the alternation of bonding
distances along these rows is characteristic for the distortion from rock salt to yellow InCl.
From inspection of figures 4, 5 and 7 it follows that the three different modes show the
same characteristic longitudinal pattern. We introduce the longitudinal force constantf and
the transverse force constantg for nearest neighbours. It is assumed that these interactions
can be described by means of harmonic springs. For the1 irrep, e.g.e1 cosk1

6 · r, the
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Figure 8. InCl in the ‘geometric’ approximation;z = 0 (left) andz = 1
4 (right).

Figure 9. InCl in the ‘geometric’ approximation;z = 1
2 (left) z = 3

4 (right).

energy for one formula unit of an InCl molecule,E(1), is

E(1) = f (d1− d ′1)2+ g(d1− d ′1)2. (2)

For the W irrep, e.g.e1 cosk1
8 · r,

E(W) = f (w1+ w′1)2+ g(w1− w′1)2. (3)

Remember that the coordinatesw1 andw′1 differ in sign, which is not the case ford1

andd ′1 or for s3 ands ′3 (see table 4).
Finally, for the64 irrep, e.g.e1 sink5

4 · r,

E(64) = f (s3− s ′3)2+ g(s2
3 + s ′23 ). (4)

For this nearest-neighbour interaction and the ‘geometric’ approximation, we conclude
thatE(1) is lower in energy by the term 2gd1d

′
1 thanE(64). On the other handE(W) is

higher in energy thanE(64) by the same amount. This energy difference is expected to
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be small, sinceg < f and since it looks as if the transverse bonds are broken. Also we
assume that the effective mass is equal for the three different modes. In the ‘geometric’
approximation the1 and W modes together cause rows of ions to shift. Combined, these
two modes are nearly degenerate with the64 mode. From computer-generated figures (only
partly shown in figure 6 and figure 7), we find that for the1+W case each ion shift has at
a distancea0 a pair of antiparallel- and a pair of parallel-displaced ions. For the64 modes,
however, each ion has at that same distance two pairs of antiparallel-shifted neighbours.
We therefore expect the combination of1 and W waves to be somewhat more stable than
the64 modes.

When the numbers of displaced rows of ions are counted, the1 irrep and the W irrep
contribute together one half of the possible shifts. The64 irrep contributes a quarter of the
possible shifts. This means also that a quarter of the rows have no shift. In figure 8 and
figure 9 all shifts in InCl in the ‘geometric’ approximation are given.

By inspection of the geometry of especially the type 2 InCl6 octahedra, it has been
found that in the ‘geometric’ approximation the symmetry differs considerably from the
almost ‘trigonal’ form. Therefore we think that the driving force required for obtaining the
real structure by changing the symmetry coordinates slightly (table 2) is the energetically
more favourable shape, with almost point group 3 for the InCl6 octahedra of In type 2 [5].

4. Third-order invariants

Third-order invariants in the sense of Landau’s theory for the development of the free energy
of the yellow InCl crystal will be derived in this section. For this purpose we refer to tables
A4 and A5 (given later, in the appendix), giving the coordinates of representative In and
Cl ions. Different sources of anharmonicity exist, and the proportionality constants are not
expected to be equal. Let us abbreviate the T2g components toQαβ , the T1u components
to µα (the three types have the same group theoretical behaviour), the T2u components
to Fα and the T1g components toRα. This leads to terms of the following type (the
cartesian components are given in cyclic order byα, β andγ ) (e.g. see the tables given by
Watanabe [18]):

χq
∑
α

Qαβ

1

2
{µ′αµβ + µ′βµα} (5)

χr
∑
α

Rα
1

2
{µ′βµγ − µ′γ µβ} (6)

χt
∑
α

Fα{µβQαβ − µγQγα}. (7)

The susceptibilitiesχq, χr andχt have the dimension of energy in our equations, since the
three coordinates are expressed as fractions of the cell parameter of the cubic yellow InCl
structure. These expressions have to be developed for the In as well as for the Cl sites.

As is usual in the formulation of Landau invariants, they are expressed in terms of the
relevant normal coordinates. Results from the tables A4 and A5 (see later, in the appendix),
using the geometric approximation and considering table 5, give us for formula (5) for In

32

3

√
3AIn[(d ′1+ w′1)2s3+ (d ′2− w′2)s ′3(d2− w2)] (8)

and for Cl
32

3

√
3ACl[−(d2− w2)

2s ′3− (d1− w1)(d
′
1+ w′1)s3]. (9)
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Whereas the third-order terms with quadrupole moments arise from all types of ion, the
third-order invariant from equation (6) occurs only for ions of type 2:

8

3

√
3BIn(d1− d2− w1+ w2)[s3(d

′
2− w′2)− (d1− w1)s

′
3] (10)

8

3

√
3BCl(−d ′1+ d ′2− w′1− w′2)[(d ′2− w′2)s3− s ′3(d1− w1)]. (11)

The strong T2u components for the ions of type 1 give the following invariants
(equation (7)):

16

3

√
3CIn(d1− d2− w1+ w2)[s

′
3(−d1+ w1)+ (d ′2− w′2)s3] (12)

16

3

√
3CCl(−d ′1+ d ′2− w′1− w′2)[(−d1+ w1)s

′
3+ s3(d ′2− w′2)]. (13)

These invariants have been derived without using the T1u2 modes, as this is unnecessary
for the discussion.

Figure 10. An In(1)Cl6 cluster. In order to distinguish the T2u mode from the others, the
lengths of its arrows are shown twice as long.

Whereas it is difficult to say whether equations (5) and (6) contribute much to the energy
of the system, the effect of equation (7) seems important. This has been explained by us
[5] as the tendency to increase the distance between the Cl ions closest to the lone pair
(see figure 10). Suppose that the lone pair is pointing in the [110] direction, between the
local positivex-axis and the positivey-axis. The ligands at these axes (numbered 1 and
2) do not give enough room. Their distance can be made longer by increasing the angle
between the axes. In addition, the large t2uz coordinate as well as the right combination of
the t2gzx and t2gzy coordinates increase the distance between the ligands in thez-direction.
Intentionally, the local vectors belonging to the t2uz coordinate are in figure 10 shown twice
as long as those belonging to the t2g coordinates. From this picture it is seen that the local
scalar products of these coordinates annihilate each other. This has to be so, since the
product T2uz(T2gzx + T2gyz) is odd for inversion. However, multiplying this by the dipolar
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moment directed along [110] changes the relative weight of the positive and the negative
contributions, and this results in a third-order term.

The main conclusion of this section is that third-order invariants do indeed exist.

5. Fourth-order invariants

5.1. Ferrodistortive and antiferrodistortive patterns

The symmetry of the point group of the crystal is lowered fromm3̄m to 23. It will be
shown that for yellow InCl the1 modes introduce ferrodistortive helical deformations,
which transform as the one-dimensional A1u irrep of the point groupm3̄m at the0 point.
The W modes introduce tetrahedrons, with deformations transforming as A2u at the0 point.
The64 modes introduce bilinear quantities transforming as A2g, but at the X point (vide
infra). Table 8 contains the one-dimensional irreps of the point groupm3̄m.

Table 8. One-dimensional irreps of the point groupm3̄m.

m3̄m E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 −1 −1 1 1 −1 1 1 −1
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 −1 −1 1 −1 1 −1 −1 1

From table 8 it follows that a bilinear quantity transforming as A1u destroys all improper
symmetry operations, thus leaving a point group 432 (O). A further reduction in symmetry
occurs if a bilinear quantity transforming as A2u is also present. The total reduction results
in the group 23 (T), the point group of yellow InCl. The A2u irrep by itself would reduce
m3̄m to 4̄3m (Td). The other possibility of a bilinear quantity transforming as the irrep A2g

at the0 point is not realized in this structure.
We will first treat chirality, then tetrahedron formation and finally spiral formation.

5.2. Chirality

The1 modes appear as transverse planar waves, inducing ferrodistortively ordered static
helices in rock salt. It is instructive to consider these planar waves first in view of the
analogy with the familiar phenomenon of optical rotatory power.

The bilinear quantity which in a cubic system transforms as A1u takes the form
xRx + yRy for a circular standing wave along thez-direction. Herex and y are the
transverse displacements, andRx andRy are rotation components.

µ · R may be expressed also in terms of the following rotational strength for static
helices along thez-axis (see Maaskant and Haije [19]):

Gyr=
∑
n

Px,n[Py,(n+1) − Py,(n−1)]/a0− Py,n[Px,(n+1) − Px,(n−1)]/a0. (14)

This equation is essentiallyP · ∇×P , whereP denotes a shift of ions. In this paper
differentials are replaced by differences, andn numbers the planes perpendicular to the
z-axis. Only combinations of In+ and Cl− ions are considered. Gyr, however, will be
treated as a geometric object. It will not be necessary to introduce charges. We include a



Yellow InCl as a distorted rock-salt lattice 9773

normalization constant:

Gyr(k1
6) =

2

3a0N

∑
n

[
d ′1d2(1+ cos 2k1

6 · r)+ d ′2d1(1− cos 2k1
6 · r)

]
(15)

Since for the idealized situationd ′1d2 = d ′2d1 the cosines annihilate each other. The result
for the three directions is

Gyr(1) = 2

a0
[d ′1d2+ d ′2d1]. (16)

Gyr(1) transforms as A1u, k = 0, and describes the ferrodistortive ordering of static
helices along the three directions of the cell axes. Note thatµ ·R as well asQ · F are
included in equation (16). This follows from table 6, where both quantities occur under
the action of one of the1 modes. The square of Gyr(1) is a correct Landau fourth-order
invariant.

The W irreps do not induce ferrodistortive chirality. Because of the special positions of
the cations and anions, the displacements show helices of alternating sense arranged along
the cell axes. This can be proven by applying equation (14) for example tok1

8:

Gyr(k1
8) =

2

3a0N

∑
n

[
w′1w2(1+ cos 2k1

8)+ w′2w1(1− cos 2k1
8)
]
. (17)

For the ideal casew′2w1 = −w′1w2. Therefore, the result for the W modes is

Gyr(W) = 2

3a0
[w′1w2− w′2w1][cos 2k1

8 · r + cos 2k2
8 · r + cos 2k3

8 · r]. (18)

This represents antiferrodistortively ordered chirality belonging to the X point in the
first B.Z.. Since for the fcc lattice 2k1

8 is equivalent to 2k1
6 and similarly for the other

components, equation (18) corresponds to anA3 distribution (equation (A3)).
The 64 waves also cause antiferrodistortively ordered chirality, but with theA2

distribution (equation (A2)):

Gyr(6) = − 1

a0
s3s
′
3[sink1

4 · r + sink2
4 · r + sink5

4 · r

+ sink6
4 · r + sink9

4 · r + sink10
4 · r]. (19)

We have studied the chirality on the computer, for waves propagating along thez-
axis of the three types of wave vector:k1

6, k1
8 and thosek4-vectors which have only

distortions along thee1- and e2-axes. Thek1
6-vector alone gives completely delocalized

waves. However, as soon as the other waves are added, localization occurs, such that the
chiral effect is localized in rows of alternating cations and anions of type 1. We next studied
the behaviour of the T2u moments, which occur in the scalar productF ·Q. These moments
are formed by1 and W modes. Again interference is noted. On applying allk6- andk8-
vectors, only one strong component remains for the cations and anions of type 1.

The chirality due to the1 waves is not only ferrodistortive, but their combination
induces a term ofA2-type (equation (A2)) as well. A similar term arises from the
combination of W modes, which induce the tetrahedron character (equation (22)). A nice
example of such an antiferrodistortive arrangement arising through the interaction of waves
of different origin is that In(3) and In(4) octahedra differ in sign as regards the chirality as
well as the tetrahedron character. This can only be true by means of theA4 scalar which
belongs to the L point (see equation (A4)), arising from the product of64 and1 and/or W
modes. This can be shown from tables A4 and A5—see later.
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5.3. Tetrahedral distortion from the cube

By analogy with equation (14),

Tetr=
∑
n

Px,n[Py,(n+1) − Py,(n−1)]/a0+ Py,n[Px,(n+1) − Px,(n−1)]/a0. (20)

This equation differs from equation (14) in having a+ sign in the middle. It transforms as
xyz and leads to correct results. For thek1

8-mode for instance, it is found that

Tetr(k1
8) =

2

3a0N

∑
n

[
w′1w2(1+ cos 2k1

8 · r)− w′2w1(1− cos 2k1
8 · r)

]
(21)

which gives for the complete W waves

Tetr(W) = 2

a0
(w′1w2− w′2w1). (22)

Like Gyr(1), Tetr(W) arises from two sources:µ ·Q andR · F (see table 7).
The1 waves and the64 waves lead to antiferrodistortive arrangements:

Tetr(1) = 2

3

1

a0
(d ′1d2+ d ′2d1)(cos 2k1

6 · r + cos 2k2
6 · r + cos 2k3

6 · r) (23)

Tetr(6) = 1

a0
s3s
′
3[sink1

4 · r + sink2
4 · r + sink5

4 · r

+ sink6
4 · r + sink9

4 · r + sink10
4 · r]. (24)

5.4. Spiral formation

There is another bilinear quantity that is unknown as far as we are aware, and is induced by
the64 modes. Characteristic of this are distortions shaped as one half of a swastika (see
figure 11). It is as if twinning occurs as a result of shearing—however, without leading to
domain formation. We named this type of deformation a spiral, because of the similarity
of its shape to a watch spring or a spiral galaxy. Spirals transform as A2g, but only
antiferrodistortive ordering is found in the structure of InCl. The bilinear form is a product
of the expressions for the rotations and quadrupoles to be expected for thek4-modes.

Figure 11. The decomposition of an even mode into a quadrupole (T2g) and a rotation (T1g).
Their product represents a part of the bilinear pseudoscalar which transforms as A2g.

There are two expressions belonging to irrepτ4(B2) also, such as that for the64 normal
mode (see table A1 later). These are

[{(Qyz +Qzx)/
√

2} cosk1
4 · r + {(Qyz −Qzx)/

√
2} cosk2

4 · r
+ {(Qzx +Qxy)/

√
2} cosk5

4 · r + {(Qzx −Qxy)/
√

2} cosk6
4 · r

+ {(Qxy +Qyz)/
√

2} cosk9
4 · r + {(Qxy −Qyz)/

√
2} cosk10

4 · r] (25)
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[{(Rx − Ry)/
√

2} cosk1
4 · r + {(Rx + Ry)/

√
2} cosk2

4 · r
+ {(Ry − Rz)/

√
2} cosk5

4 · r + {(Ry + Rz)/
√

2} cosk6
4 · r

+ {(Rz − Rx)/
√

2} cosk9
4 · r + {(Rz + Rx)/

√
2} cosk10

4 · r]. (26)

The distributions of the quadrupoles, according to equation (25), and of the rotations
(equation (26)) have been checked by a computer program.

Multiplying these expressions gives

J = RxQyz[cos 2k1
6 · r + cos 2k3

6 · r] + RyQzx[cos 2k2
6 · r + cos 2k3

6 · r]

+ RzQxy [cos 2k1
6 · r + cos 2k2

6 · r]. (27)

This expression clearly belongs to the X point. Although individually the1 and the W
modes build up a distribution likeJ , these compensate each other in the idealized crystal.
Therefore, only the6 modes contribute:

Spir(64) = [c1s
2
3 + c2s

′2
3 ]J. (28)

This results in unusual antiferrodistortive ordering of the type A2g, with, for the In ions,
−s2

3, −s2
3, 3s2

3 and 3s2
3 for the first to the fourth type respectively, ands ′23 , s ′23 , −3s ′23 and

−3s ′23 for the Cl ions of the first to the fourth type, respectively.

5.5. Final forms

Expressing the fourth-order Landau invariants as a function of theird-, w- ands-amplitudes
is very complex, since through interference terms they reinforce or annihilate each other.
The easiest way of describing the important Landau invariants is to work with table 5.
When the explicit formulae in terms of the algebraic amplitudes are required, use can be
made of the tables A4 and A5—see later.

The most important second-order invariant is probably the interaction between the shifts
of the ions with respect to their immediate neighbours. This is through the scalar product
of q(t1u1) ·q(t1u2). From table 5 one sees directly that the T1u1 and the T1u2 coordinates are
collinear. The type 1 and 2 ions contribute only two thirds as much as the type 3 and 4 ions,
which corresponds to the digonal and trigonal character of these octahedra, respectively. It
corresponds also to the longitudinal distortions of the lines of ions.

Other second-order invariants are formed from A1g products of the following three-
component moments with themselves: the rotations or the quadrupoles, or the three types
of T1u and T2u moment. All of these second-order invariants lead to fourth-order invariants
also.

On forming scalar products of the T1g and, for example, the T1u1, A1u products are
obtained, which have values in proportion to 2, 0,−3, 3 for the four types of In ion, and
2, 0, 3,−3 for the four types of Cl ion. We have to include in addition for the type 1 ions
the T2u component, which together with the corresponding T2g component, contributes to
the A1u scalar. The type 2 ions also contribute to this type of scalar through the product of
q(t1u3) andq(t1g) only.

We can form A2u scalars by combining T2g with for example, T1u1. They contribute
in proportion to 0, 2,−3, 3 for the In ions and 0,−2, −3, 3 for the Cl ions. However,
the q(t1u3z) × q(t2gxy)-term for In(2) and the corresponding term for Cl(2) should also be
included. One should also include theq(t2uz)-term for In(1), which, multiplied withq(t1gz),
also contributes to this A2u scalar.

The A2g pseudoscalars are formed by multiplyingq(t1g) andq(t2g). For the In sublattices
1– 4 these are in the proportion−1,−1, 3, 3 and for Cl they are in the proportion 1, 1,−3,
−3 respectively.
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There are therefore fourth-order invariants of different parentage: those derived from
the A1g, A1u, A2u and A2g scalars.

6. Discussion

In the Landau theory of second-order phase transitions [14, 15] one studies the possibility of
a development of the thermodynamic potential (usually called the free energy) in a power
series of the so-called order parameter. When the so-called Landau conditions (LC) are
fulfilled, a second-order phase transition occurs at the temperature where the coefficient
of the harmonic term is zero. This Landau theory describes many second-order phase
transitions. But in addition the development is possible for a number of phase transitions
which do not fulfil the Landau conditions (see, e.g., [20, 21]).

We imagine the following hypothetical phase transition. Let the shifts of the rows of
ions be denoted by the order parameterη, and let the ratio between the In and the Cl shifts
remain constant. Then the development becomes

F = F0+ Aη2+ Bη3+ Cη4+ · · · . (29)

HereF0 is the free energy of the high-symmetry phase. In general, for just a distortion
belonging to a single irrep, theA-constant varies from positive (T > Tc) towards zero (at
Tc). At T = Tc a continuous phase transition sets in, provided that four Landau conditions
are fulfilled.

We now discuss these conditions, recapitulating the different grounds which support our
view.

LC1. The new structure should have a space group, which is a subgroup of the high-
symmetry space group of the parent structure.

The experimental proof of the rock-salt structure being the appropriate parent structure
in this case is supported by the following facts:

(a) from the three-dimensional Patterson function a deformed rock-salt structure was
established [1–3];

(b) AB compounds with cations with a similar outer electronic configurations (from the
so-called p-block elements) occur often either with the rock-salt structure or a deformed
rock-salt structure [6];

(c) red InCl with theβ-TlI structure shows double layers with the rock-salt stacking
[12, 13]; and

(d) the relationship between the yellow InCl structure and the rock-salt structure is
clearly demonstrated in table 1.

LC2. Only a lattice mode belonging toone irreducible representation is allowed for a
second-order transition.

We found three equally strong normal coordinates belonging to different irreps and that
are pseudo-degenerate. In our opinion the treatment of this hypothetical phase transition
should be started taking into account these three modes,vide infra.

LC3. A third-order term should not be present [15, 20]. Or, to express this differently,
the constantB (equation (29)) should be zero by symmetry. In section 4 we have given
evidence that such a third-order term is present. It consists of products of the three main
irreps. This means that the hypothetical phase transition is of first order.

LC4. This condition is also called the Lifshitz condition. The structure should be stable
for small variations of the wave vector. Antisymmetric squares of the actual irrep should
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not contain a part which transforms as a vector component [15]. Haas [22] gave a different
proof, which can be expressed by the requirement that the proper symmetry group ofk has
no invariant vectors. The W irreps (the group ofk is D2d) fulfil LC4, but the1 and the
64 modes (the groups ofk are C4v and C2v, respectively) do not fulfil LC4. However, the
third-order term couples these waves and probably the W modes also fix the others. No
sign of an incommensurate phase has been found, experimentally.

A further condition for a second-order phase transition is that the constantC in equation
(29) should be positive in order to keepη bounded. In the case whereC is negative, powers
higher than four have to be studied in order to prevent|η| from increasing to infinity.

The case of LC2 needs closer inspection. Let us for the moment consider the case in
which three different lattice modes have exactly the same eigenfrequencies. The deformed
structure then has to be a superposition of these three modes. Physically, one would expect
such a structure to have a certain tolerance for deviating conditions. One expects such a
structure to remain essentially the same for a not too large mode of another irrep, or when
the eigenfrequencies of the large modes are not exactly equal. In our opinion this is the
case for yellow InCl.

This means that here the second Landau condition does not apply. Landau also had a
different experiment in mind. He imagined a continuous change in temperature with nearly
infinite precision, which could discriminate between theA-constants (equation (29)) of the
three relevant modes. In our case, however, a phase transition has not been found. In
addition, from LC3, it would be of first order.

The description of this hypothetical phase transition as a successive series of phase
transitions failed, because of a lack of experimental evidence. Also, treating one of the
three relevant modes as a starting point has no experimental support.

We treated the strong modes in an equivalent way, with equal (absolute) amplitudes.
This has been called the ‘geometric’ approximation. Table 4 shows that the remaining
differences from the experiment are an order of magnitude smaller than the deviations from
the rock-salt structure. Therefore, we believe that we have understood the essence of the
structure of yellow InCl. The picture of the cooperative distortion in InCl is best given
by figures 8 and 9. The real structure differs only slightly, the space group remaining the
same.

The desired picture of the cooperative distortion is given by our ‘geometric’ approx-
imation. The essence of it is that the deformation consists of longitudinal displacements of
rows of ions, with different shifts for the anions and the cations. This kind of displacement,
where the rows seem to act independently, is produced by modes of the1, W and64

type. That the force constants of these modes are nearly equal is intuitively clear from the
rock-salt structure. We have here a case of supersymmetry.

The idealized structure of the ‘geometric’ approximation also allows us to explicitly
describe the introduction of chirality, tetrahedral character and spiral distributions. From
table 4 it follows that this approximation does indeed treat the main distortion. The change
thereafter is most probably caused by the octahedra around the In(2) ions, which ‘prefer’ a
more trigonal distortion [5]. So the real structure consists of 12 digonally and 20 trigonally
distorted octahedra. This case of deformed octahedra of mixed kinds is probably stabilized
through the cooperative interactions. This coexistence of differently distorted octahedra
occurs more often in solid-state compounds. For example hexagonal BaTiO3 and BaMnO3

have crystal structures with mixed hexagonal/cubic packings [23].
The complexity of this InCl structure arises because, for a good representation, the

trigonally distorted octahedra demand threefold axes of quantization, whereas for the digonal
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octahedra of type 1, fourfold axes are more appropriate (see figure 1). A further increase
of complexity is due to the many different moments which coexist (table 5). We have seen
a similar situation, but slightly simpler, for CsCuCl3 [19], where even and odd moments
coexist. These occur for yellow InCl, since one has to consider little groups of rather low
order (4mm, 4̄2m and 2mm) for respectively the1, W and64 modes. Especially interesting
is the occurrence of electrical octupoles (T2u).

The reduction of the point group of the crystal has been studied in order to identify
bilinear pseudoscalars. This method is new, as far as we are aware. We found ferrodistortive
as well as antiferrodistortive distributions of chirality and tetrahedral distortion. We
introduced the concept of geometric chirality and found contributions from the octupoles,
for which optical counterparts have never been observed. This goes beyond the Condon
approximation [17] and arises for yellow InCl because the wavelength of the distortions is
≈three times the edge length of an octahedron.

The tetrahedron formation can easily be envisaged. All InCl6 octahedra, except those
of type 1, have (approximately) 3m symmetry for which locallyxyz is an invariant. The
dipolar axes lie along one of the body diagonals (eight directions). Since there are 20
octahedra of this type, the cubic structure has to be broken. However, 20 octahedra can
form a tetrahedral structure and this is what actually occurs. The digonal octahedra (of type
1) have their dipolar moments along one of the [110] axes or equivalent directions, i.e. just
in between two neighbouring corners of a cube.

Also interesting is the interference which occurs between the different normal modes.
This leads to localization at the different sites. For example, the In(1) and Cl(1) ions lie on
lines, and the geometric chirality is concentrated on them. The In(2) and Cl(2) ions also lie
on lines and bear tetrahedral distortions. The ions of types 3 and 4 show chirality as well
as tetrahedron formation. Only in the geometric approximation do the type 3 and type 4
ions form exactly each other’s opposites.

The effect of just the64 modes leading to the S.G.Pa3̄ (T6
h) is new. Pa3̄ contains

inversion; it is a supergroup ofP213 with index 2. Characteristic of this group are
the even distortions, called spirals, which consist of a superposition of a rotation (T1g)
and a quadrupole (T2g). These form a bilinear scalar product of the A2g type with
antiferrodistortive ordering of a new kind. The values for the In(3) and In(4) sites are
three times the values for the In(1) and In(2) sites, and of the opposite sign.

Appendix A

A.1. Lattice deformation coordinates

In this subsection the deformations of the rock-salt structure will be evaluated in symmetry
modes of the space groupFm3̄m. The unit cell of InCl is primitive cubic with a cell
parameter of 2a0, wherea0 is the cell parameter of the cubic cell (Z = 4) of a rock-salt-
type structure. In addition we will give the local octahedron modes.

The space groupP213 [24] contains group elements such aszxy and yzx (in
the Jones faithful representation; see, e.g., [25]), which are rotations of 2π/3 around
(111), and rotations ofπ along the cell axes, with extra translations. We use
the notation of Kovalev [26] whereh2 = xȳz̄, h3 = x̄yz̄ and h4 = x̄ȳz. The
translations are in units ofa0. The space group elements for the last three are then:
{h2|1, 1, 0}, {h3|0, 1, 1}, {h4|1, 0, 1}.

We have to study expressions such ase1 exp ikms · r, identifying those that are invariant
for the group elements ofP213. Heree1, e2 and e3 are unit vectors along respectively



Yellow InCl as a distorted rock-salt lattice 9779

Table A1. Normalized symmetry modes of the ion shifts in InCl for the space groupFm3̄m.

ci G(k) τi

d1

√
2/3N{e1 cosk1

6 · r + e3 cosk2
6 · r + e2 cosk3

6 · r} T119(4mm) τ5(E)

d2

√
2/3N{e2 sink1

6 · r + e1 sink2
6 · r + e3 sink3

6 · r} T119(4mm) τ5(E)

w1

√
2/3N{e1 cosk1

8 · r + e3 cosk2
8 · r + e2 cosk3

8 · r} T131(4̄2m) τ5(E)

w2

√
2/3N{e2 sink1

8 · r + e1 sink2
8 · r + e3 sink3

8 · r} T131(4̄2m) τ5(E)

s1

√
1/6N{(e1 + e2) cosk1

4 · r + (e2 + e3) cosk5
4 · r + (e3 + e1) cosk9

4 · r

+ (e1 − e2) cosk2
4 · r + (e2 − e3) cosk6

4 · r + (e3 − e1) cosk10
4 · r} T146(2mm) τ1(A1)

s2

√
1/6N{(e1 − e2) cosk1

4 · r + (e2 − e3) cosk5
4 · r + (e3 − e1) cosk9

4 · r

+ (e1 + e2) cosk2
4 · r + (e2 + e3) cosk6

4 · r + (e3 + e1) cosk10
4 · r} T146(2mm) τ3(B1)

s3

√
1/3N{+e3 sink1

4 · r + e1 sink5
4 · r + e2 sink9

4 · r

− e3 sink2
4 · r − e1 sink6

4 · r − e2 sink10
4 · r} T146(2mm) τ4(B2)

l1

√
1/6N{(e1 + e2 + e3) cosk1

9 · r + (e1 − e2 − e3) cosk2
9 · r

+ (−e1 + e2 − e3) cosk3
9 · r + (−e1 − e2 + e3) cosk4

9 · r} T221(3̄m) τ4(A2u)

l2

√
1/6N{(e1 + e2 + e3) sink1

9 · r + (e1 − e2 − e3) sink2
9 · r

+ (−e1 + e2 − e3) sink3
9 · r + (−e1 − e2 + e3) sink4

9 · r} T221(3̄m) τ4(A2u)

the a-, b- andc-axes of the unit cell of InCl. Thekms are vectors in the reciprocal cell of
Fm3̄m. s labels the star (the notation is that of Kovalev [26]) (4= 6, 6 = 1, 8 = W,
9 = L). m labels the members of the star. For example,e3 exp ik1

6 · r is not invariant
for all group elements. The expression changes sign for{h4|1, 0, 1}. On the other hand
{h2|1, 1, 0}e1 exp ik1

6 · r = e1 exp ik1
6 · r. Also {h3|0, 1, 1}e1 exp ik1

6 · r = e1 exp−ik1
6 · r,

and {h4|1, 0, 1}e1 exp ik1
6 · r = e1 exp ik1

6 · r. Thereforee1 cosk1
6 · r is invariant for the

threeπ -rotations. Applying the rotations by 2π/3 around [111] gives the first row of table
A1. The other expressions are derived in a similar way.

Table A2. k-vector definitions of the different stars.

k1
6 = −k4

6 = π(0, 0, 1)/a0 k1
8 = −k4

8 = π(2, 0, 1)/a0 k1
4 = π(1, 1, 0)/a0 k2

4 = π(1, 1̄, 0)/a0

k2
6 = −k5

6 = π(0, 1, 0)/a0 k2
8 = −k5

8 = π(0, 1, 2)/a0 k5
4 = π(0, 1, 1)/a0 k6

4 = π(0, 1, 1̄)/a0

k3
6 = −k6

6 = π(1, 0, 0)/a0 k3
8 = −k6

8 = π(1, 2, 0)/a0 k9
4 = π(1, 0, 1)/a0 k10

4 = π(1̄, 0, 1)/a0

k1
9 = π(1, 1, 1)/a0 k2

9 = π(1, 1̄, 1̄)/a0 k3
9 = π(1̄, 1, 1̄)/a0 k4

9 = π(1̄, 1̄, 1)/a0

Table A1, together with the different stars ofk (table A2), gives the symmetry modes
necessary for describing the ionic positions inP213. In the first column the symbols for the
symmetry coordinates are given. The third column denotes the point groups corresponding
to the groups ofk and the last column the irreps, both in Kovalev’s and in the conventional
notation.
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Table A3. Symmetry modes of an octahedron.

q(a1g) (x1 + y2 + z3 − x4 − y5 − z6)/
√

6
q(egθ ) (2z3 − x1 − y2 − 2z6 + x4 + y5)

√
12

q(egε) (x1 − y2 − x4 + y5)/2
q(t1gx) (z2 − y3 − z5 + y6)/2
q(t1gy) (x3 − z1 − x6 + z4)/2
q(t1gz) (y1 − x2 − y4 + x5)/2
q(t2gyz) (z2 + y3 − z5 − y6)/2
q(t2gzx) (x3 + z1 − x6 − z4)/2
q(t2gxy) (y1 + x2 − y4 + x5)/2
q(t1u1x) x0

q(t1u1y) y0

q(t1u1z) z0

q(t1u2x) (x1 + x4)/
√

2
q(t1u2y) (y2 + y5)/

√
2

q(t1u2z) (z3 + z6)/
√

2
q(t1u3x) (x2 + x3 + x5 + x6)/2
q(t1u3y) (y1 + y3 + y4 + y6)/2
q(t1u3z) (z1 + z2 + z4 + z5)/2
q(t2ux) (x2 − x3 + x5 − x6)/2
q(t2uy) (y3 − y1 + y6 − y4)/2
q(t2uz) (z1 − z2 + z4 − z5)/2

A.2. Symmetric octahedron modes

In table A3 we give normalized octahedron modes which are orthogonal for the same
site, but not necessarily orthogonal for adjacent sites. Table A3 consists of the modes of
vibrations, translations and rotations of isolated octahedra each with a central atom. The
numbering of the ligands follows the convention given by Van Vleck [27] (see figure 1).
There are three T1u modes, which can be expected to interact. However, our choice in this
table leads to the simplest coordinates (similar ones have been used in [16, 5]). Table 5
gives the results for the different local coordinates.

A.3. Scalar invariants of the lower space group

In section 5, several bilinear quantities are derived. The values for these bilinear quantities
differ for different types of site. These belong to scalar distributions, which can be classified
as having irreps belonging to a specifick-vector (referred toFm3̄m). These invariants of
the space group of lower order are mentioned here for clarity. Their derivation is similar
as that of the distortion modes which have been treated in subsection A.1.
A1 from equation (A1) is a constant, belonging to the0 point. It describes ferrodistortive

patterns of quantities like chirality and tetrahedral distortion, which are equal for all In ions
or for all Cl ions. Note that invariants forP213 are not necessarily invariant in the B1
structure. We have

A1 = constant (A1)

A2 = [sink1
4 · r + sink2

4 · r + sink5
4 · r + sink6

4 · r + sink9
4 · r + sink10

4 · r] (A2)

A3 = [cos 2k1
6 · r + cos 2k2

6 · r + cos 2k3
6 · r] (A3)

A4 = [cosk1
9 · r + cosk2

9 · r + cosk3
9 · r + cosk4

9 · r] (A4)

A5 = [sink1
9 · r + sink2

9 · r + sink3
9 · r + sink4

9 · r]. (A5)
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Table A4. Coordinates of some specific In sites. (a0 is the cubic rock-salt parameter.)

In(1) In(2)
Coordinate (0.5, 0, 1.5)a0 (1.5, 0, 0.5)a0

q(a1g) −(4/3)s1 (4/3)s1
q(egθ ) (2/3)

√
2s1 −(2/3)√2s1

q(egε) −(2/3)√6s2 (2/3)
√

6s2
q(t1gx) −(2/3)√3s3 − (2/3)

√
6s2 −(2/3)√3s3 + (2/3)

√
6s2

q(t1gy) (
√

6/3)(d1 − w1) (
√

6/3)(−d1 + w1)

q(t1gz) −(√6/3)(d1 + d2 + w1 − w2) (
√

6/3)(d1 − d2 + w1 + w2)

q(t2gyz) (2/3)
√

3(s3 +
√

2s1) (2/3)
√

3(s3 −
√

2s1)

q(t2gzx) (
√

6/3)(d1 − w1 + 4l2) (
√

6/3)(−d1 + w1 + 4l2)

q(t2gxy) (
√

6/3)(−d1 + d2 − w1 − w2) (
√

6/3)(d1 + d2 + w1 − w2)

q(t1u1x) (
√

6/3)(−√2s′3 + s′1 − s′2) (
√

6/3)(
√

2s′3 + s′1 − s′2)
q(t1u1y) (

√
6/3)(−d ′2 + w′2 + 2l′1) (

√
6/3)(d ′2 − w′2 + 2l′1)

q(t1u1z) (
√

6/3)(d ′1 + d ′2 − w′1 + w′2) (
√

6/3)(d ′1 − d ′2 − w′1 − w′2)
q(t1u2x) −(2/3)√6s3 (2/3)

√
6s3

q(t1u2y) −(2/3)√3(d2 − w2) (2/3)
√

3(d2 − w2)

q(t1u2z) (2/3)
√

3(d1 + d2 + w1 + w2) (2/3)
√

3(d1 − d2 + w1 − w2)

q(t1u3x) (
√

6/3)(s1 − s2) (
√

6/3)(s1 − s2)
q(t1u3y) −(√6/3)(d2 + w2) (

√
6/3)(d2 + w2)

q(t1u3z) (
√

6/3)(d1 + d2 − w1 − w2) (
√

6/3)(d1 − d2 − w1 + w2)

q(t2ux) (
√

6/3)(s1 − s2) (
√

6/3)(s1 − s2)
q(t2uy) (

√
6/3)(d2 + w2) −(√6/3)(d2 + w2)

q(t2uz) (
√

6/3)(d1 − d2 − w1 + w2) (
√

6/3)(d1 + d2 − w1 − w2)

In(3) In(4)
Coordinate (0, 0, 0)a0 (1, 1, 1)a0

q(a1g) 4l2 −4l2
q(egθ )

q(egε)

q(t1gx) −(√6/3)(d2 + w2 −
√

2s3) (
√

6/3)(d2 + w2 +
√

2s3)

q(t1gy) −(√6/3)(d2 + w2 −
√

2s3) (
√

6/3)(d2 + w2 +
√

2s3)

q(t1gz) −(√6/3)(d2 + w2 −
√

2s3) (
√

6/3)(d2 + w2 +
√

2s3)

q(t2gyz) (
√

6/3)(d2 + w2 +
√

2s3) −(√6/3)(d2 + w2 −
√

2s3)

q(t2gzx) (
√

6/3)(d2 + w2 +
√

2s3) −(√6/3)(d2 + w2 −
√

2s3)

q(t2gxy) (
√

6/3)(d2 + w2 +
√

2s3) −(√6/3)(d2 + w2 −
√

2s3)

q(t1u1x) (
√

6/3)((d ′1 + w′1 + s′1 + s′2) (
√

6/3)(−d ′1 − w′1 + s′1 + s′2)
q(t1u1y) (

√
6/3)(d ′1 + w′1 + s′1 + s′2) (

√
6/3)(−d ′1 − w′1 + s′1 + s′2)

q(t1u1z) (
√

6/3)(d ′1 + w′1 + s′1 + s′2) (
√

6/3)(−d ′1 − w′1 + s′1 + s′2)
q(t1u2x) (2/3)

√
3(d1 − w1) (2/3)

√
3(−d1 + w1)

q(t1u2y) (2/3)
√

3(d1 − w1) (2/3)
√

3(−d1 + w1)

q(t1u2z) (2/3)
√

3(d1 − w1) (2/3)
√

3(−d1 + w1)

q(t1u3x) (
√

6/3)(d1 + w1 + s1 + s2) (
√

6/3)(−d1 − w1 + s1 + s2)
q(t1u3y) (

√
6/3)(d1 + w1 + s1 + s2) (

√
6/3)(−d1 − w1 + s1 + s2)

q(t1u3z) (
√

6/3)(d1 + w1 + s1 + s2) (
√

6/3)(−d1 − w1 + s1 + s2)
q(t2ux) (

√
6/3)(d1 + w1 − s1 − s2) (

√
6/3)(−d1 − w1 − s1 − s2)

q(t2uy) (
√

6/3)(d1 + w1 − s1 − s2) (
√

6/3)(−d1 − w1 − s1 − s2)
q(t2uz) (

√
6/3)(d1 + w1 − s1 − s2) (

√
6/3)(−d1 − w1 − s1 − s2)
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Table A5. Coordinates of some specific Cl sites.

Cl(1) Cl(2)
Coordinate (1, 0, 1.5)a0 (1, 0, 0.5)a0

q(a1g) −(4/3)s′1 (4/3)s′1
q(egθ ) −(√2/3)s′1 −

√
2s′2 (

√
2/3)s′1 +

√
2s′2

q(egε) −(√6/3)s′1 + (
√

6/3)s′2 (
√

6/3)(s′1 − s′2)
q(t1gx) −(2/3)√3s′3 − (2/3)

√
6s′2 −(2/3)√3s′3 + (2/3)

√
6s′2

q(t1gy) (
√

6/3)(d ′1 + d ′2 + w′1 + w′2) (
√

6/3)(−d ′1 + d ′2 − w′1 + w′2)
q(t1gz) (

√
6/3)(−d ′2 + w′2) (

√
6/3)(−d ′2 + w′2)

q(t2gyz) −(2/3)√3(s′3 +
√

2s′1) −(2/3)√3(s′3 −
√

2s′1)
q(t2gzx) (

√
6/3)(d ′1 − d ′2 + w′1 − w′2) (

√
6/3)(−d ′1 − d ′2 − w′1 − w′2)

q(t2gxy) (
√

6/3)(d ′2 − w′2 − 4l′1) (
√

6/3)(d ′2 − w′2 + 4l′1)
q(t1u1x) (

√
6/3)(−√2s3 − s1 − s2) (

√
6/3)(

√
2s3 − s1 − s2)

q(t1u1y) (
√

6/3)(−d1 − d2 − w1 − w2) (
√

6/3)(−d1 + d2 − w1 + w2)

q(t1u1z) (
√

6/3)(d1 − w1 + 2l2) (
√

6/3)(d1 − w1 − 2l2)

q(t1u2x) −2(
√

6/3)s′3 2(
√

6/3)s′3
q(t1u2y) −(2/3)√3(d ′1 + d ′2 − w′1 + w′2) (2/3)

√
3(−d ′1 + d ′2 + w′1 + w′2)

q(t1u2z) (2/3)
√

3(d ′1 + w′1) (2/3)
√

3(d ′1 + w′1)
q(t1u3x) −(√6/3)(s′1 + s′2) −(√6/3)(s′1 + s′2)
q(t1u3y) (

√
6/3)(−d ′1 − d ′2 − w′1 + w′2) (

√
6/3)(−d ′1 + d ′2 − w′1 − w′2)

q(t1u3z) (
√

6/3)(d ′1 − w′1) (
√

6/3)(d ′1 − w′1)
q(t2ux) (

√
6/3)(s′1 + s′2) (

√
6/3)(s′1 + s′2)

q(t2uy) (
√

6/3)(−d ′1 + d ′2 − w′1 − w′2) (
√

6/3)(−d ′1 − d ′2 − w′1 + w′2)
q(t2uz) (

√
6/3)(d ′1 − w′1) (

√
6/3)(d ′1 − w′1)

Cl(3) Cl(4)
Coordinate (0.5, 0.5, 0.5)a0 (1.5, 1.5, 1.5)a0

q(a1g) 4l′1 −4l′1
q(egθ )

q(egε)

q(t1gx) (
√

6/3)(−d ′1 + w′1 +
√

2s′3) (
√

6/3)(d ′1 − w′1 +
√

2s′3)
q(t1gy) (

√
6/3)(−d ′1 + w′1 +

√
2s′3) (

√
6/3)(d ′1 − w′1 +

√
2s′3)

q(t1gz) (
√

6/3)(−d ′1 + w′1 +
√

2s′3) (
√

6/3)(d ′1 − w′1 +
√

2s′3)
q(t2gyz) (

√
6/3)(−d ′1 + w′1 −

√
2s′3) (

√
6/3)(d ′1 − w′1 −

√
2s′3)

q(t2gzx) (
√

6/3)(−d ′1 + w′1 −
√

2s′3) (
√

6/3)(d ′1 − w′1 −
√

2s′3)
q(t2gxy) (

√
6/3)(−d ′1 + w′1 −

√
2s′3) (

√
6/3)(d ′1 − w′1 −

√
2s′3)

q(t1u1x) (
√

6/3)(d2 − w2 − s1 + s2) −d2 + w2 − s1 + s2
q(t1u1y) (

√
6/3)(d2 − w2 − s1 + s2) (

√
6/3)(−d2 + w2 − s1 + s2)

q(t1u1z) (
√

6/3)(d2 − w2 − s1 + s2) (
√

6/3)(−d2 + w2 − s1 + s2)
q(t1u2x) (2/3)

√
3(d ′2 − w′2) (2/3)

√
3(−d ′2 + w′2)

q(t1u2y) (2/3)
√

3(d ′2 − w′2) (2/3)
√

3(−d ′2 − w′2)
q(t1u2z) (2/3)

√
3(d ′2 − w′2) (2/3)

√
3(−d ′2 + w′2)

q(t1u3x) (
√

6/3)(d ′2 + w′2 − s′1 + s′2) (
√

6/3)(−d ′2 − w′2 − s′1 + s′2)
q(t1u3y) (

√
6/3)(d ′2 + w′2 − s′1 + s′2) (

√
6/3)(−d ′2 − w′2 − s′1 + s′2)

q(t1u3z) (
√

6/3)(d ′2 + w′2 − s′1 + s′2) (
√

6/3)(−d ′2 − w′2 − s′1 + s′2)
q(t2ux) (

√
6/3)(−d ′2 − w′2 − s′1 + s′2) (

√
6/3)(d ′2 + w′2 − s′1 + s′2)

q(t2uy) (
√

6/3)(−d ′2 − w′2 − s′1 + s′2) (
√

6/3)(d ′2 + w′2 − s′1 + s′2)
q(t2uz) (

√
6/3)(−d ′2 − w′2 − s′1 + s′2) (

√
6/3)(d ′2 + w′2 − s′1 + s′2)
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A2 gives opposite values for In(1) and In(2), and similarly for Cl(1) and Cl(2) (the type
of ion is denoted in the brackets).A3 gives values in proportion to−1,−1, 3, 3 for In of
the first to the fourth type, respectively. This is also the case for the Cl ions.A4 gives
opposite values for In(3) and In(4) andA5 gives opposite values for Cl(3) and Cl(4).

A.4. Displacements at specific sites expressed in normal lattice coordinates

In this subsection the moments at specific In and Cl sites are given in terms of the normal
coordinates. This serves to derive the Landau third-order invariants. Tables A4 and A5
can serve also for deriving the bilinear quantities, which transform as A1g,A1u,A2u and
A2g. The squares of these quantities result in fourth-order invariants expressed in symmetry
coordinates. This applies also to the real symmetry coordinates as in the so-called geometric
approximation. For the latter, a quicker way of obtaining these results is by means of table 5.
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